
For Appove

REPORT DOCUMENTATION PAGE 0M,' No. 0704-0 188
pP,"NC rerc-ring buirden lotrthis collection of information isoestimated to average I hour per response, inCluding the timp for reviewing instric'ons. searctrnq existng data sourcos

5*11"erng and rra-la-mg the data needed, and completing and reviewing the collection of information Send comments rc ... ing this b~urden estimate or arny other aspect of
th.s collection of inlofrrvdir. Including suggestions for reducing this burden, to Washington f-eadquarters Servinces, Ditectorate tor tntor,mation Operations and Preponls. 1215 Jefferson
Ca.,$ Hghn-ay. Suite 1204. A~rlington, VA 222n7?-4302, atrd to the Oftince of Management and Budget. Papery rtr Reduction Protect (0704-088)a. WjaShington, CC 20503

1. Agency Use Only (Leave blank). I2. ReotDate. 3. Re port T~e and Dates Covered.

1 190Prbceedrs
4. Title and Subtitle. 5. Funding Numbers.

(J Scattering from Rigid and Fluid-Loaded Elastic objects rrOgfi, E.r~rnr No~ 61153N

__________________________________________________________________ Project f~n 032086. Author(s).

M. F. WerbyTakN01
AcssnP.'j DN25501 1

7\ . Performing Organization Name(s) and Address(es). 8. Performing 0 tginization

Naval oceanographic and Atmospheric Research Laborato-'RprtNmbr

Ocean Sciences DirectorateQStennis Space Center, MS 39529-5004 PR 90:020:221

S 9. Sponsoring/Nionitoring Agency Name(s) and Address(es). 10. Sponsoring/Monitoring Agency
Naval oceanographic and Atmospheric Research Laboratory Report Number.

Ocean Sciences Directorate PR 90:020:221
Stennis Space Center, MS 39529-5004

11. Supplementary Notes.
I CR0

12a. DistributionlAvailability Statement. I12b. Distribution Code.
Approved for public release; distribution is unlimited.

he omN tin 0sct twrelgh l. lsfrom fluid-loaded bounded objects can be treated in a consistent manner using the

extended boundary condtion (EBC) or T-matrix method for ele,.tromagne~ic, elastic, and acoustic problems. We outline

the general principles of the EBC method and apply it to problems of engineering interest which pertain to acoustical

scattering from submxrerged three-dimensional elongated itpenetrable objects or elastic solids and shells. Several

physical examp~les of interest are offered and interpreted.

14 Subject Terms. 15. Number ot Pages.
(U) Acouqtic Scattering; (U) Shallow Water; (U) Waveguide Propagation 8

16. Price Code.

17. Security Classification 18. Security Classification 19. Security Classification 20. Limitation of Abstract.
of Report. of This Pa e. of Abp ract.

Unclassified Unctessifieg Unastfe

fJSN 7540-01-280-55C,) Standardo Form 298 (Re, 2-89)

9i 2 11 sd "



PROCEEDINGS

INTERNATIONAL CONGRESS ON
RECENT DEVELOPMENTS IN AIR- AND

STRUCTURE-BORNE SOUND AND VIBRATION
MARCH 6-8, 1990 AUBURN UNIVERSITY, USA

Edlted by
Malcolm J. Crocker

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced -

Justification

By ...... _Volume 2
Distribution I

Availability Codes

Avail arnd or
Dist Special

r',t



INTERNATIONAL CONGRESS ON
RECENT DEVELOPMENTS IN AIR- AND

STRUCTURE-BORNE SOUND AND VIBRATION
MARCH 6-8. 1990 AUBURN UNVERSY. USA

SCATTERL>IG FROM RIGID AND FLUID-LOADED ELASTIC OBJECTS
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ABSTRACT

The computation of scattered fields from fluid-loaded bounded objects can be treated in a consistent manner
using the extended boundary condition (EBC) or T-matrix method for electromagnetic, elastic, and acousdc
problems. We outline the general principles of the EBC method and apply it to problems of engineering interest
which pertain to acoustical scattering from submerged three-dimensional elongated impenetrable objects or elastic
solids and shells. Several physical examples of interest are offered and interpreted.

INTRODUCTION

Several techniques are available for describing waves that scatter from objects of known constitution and
geometry. Many of them are rather specific or have intractable numerical pitfalls. It is therefore desirable to obtain
a formulation that allows for general objects, frequency ranges, and boundary conditions, arid that overcomes
numerical difficulties commonly encountered in several broad classes of numerical methods. In this paper we briefly
describe a consistent, unified and manageable numerical approach useful for researchers interested in solving any
of a wide class of scattering problems. It is based on the coupling of the exterior and interior solutions of the surface
boundary representation of the Helmholtz orelastodynamic equations and yields the Extended Boundary Condition
(EBC) method of Waterman' 4 .The EBC method avoids numerical problems often encountered by other techniques.
We present numerous physical examples which are chosen not only for their intrinsic interest but also because they
irepresent comparatively difficult problems to solve by other means.

EBC FORMULATION

The EBC technique is a boundary integral method that couples the exterior direct scattering field solution
with the interior field solution. The method was initially developed for electromagnetic scattering by Waterman' in
1965, and subsequently for acoustical scattering by him' in 1969. The method has since evolved and is employed
in all areas of classic scattering at various levels of sophistication 4 . As with other methods, it is often possible to
make both structural and numerical variations in the basic EBC approach. We have developed formulations ' s which
In Our experience have proven the most favorable for numerical implementation and we employ them in this work.
We begin with the simplest formulation, for scattering from an impenetrable object of rotation.

The Huygen's.Poincare' integral representation of the scattered field U exterior to the bounded object, can
be described by the following equation:

UWr - ,u+(r; G(rr/n-G(rr U+(e/n]dS. (I)
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The quantity, U. is the scalar wavefield on the object surface, G is the outgoing Green's function, r' is taken

on the surface of the object, and n is a unit outward normal vector to the surface of the object. S is taken to be the
surface of the bounded object. In the subsequent development for elastic targets. U. will be the displacement vector,
and G the Green's dyadic. An additional expression required can be obtained by expressing the Huygen's-Poincare'

relation at a point interior to the object, which leads to the following equation:

0 = U,(r)+f. [U.(r)3(r".rrW n-G(r". r)U.(r)/'nldS (2)

where r" is an object interior point. In this case, the fieldcan be described as being "nulled"; hence, the nomenclature
"null field" method.

Eqs. (1) and (2) yield the extended boundary condition equations. Since in their present form they are not

directly useful, we now reduce them to a form amenable to numerical computation. Elasti: targets submerged
in a fluid require far greater mathematical detail, as indicated by Pao' and the Varadans'. Let us assume

that aU.(r')/Dn = 0, so that we obtain the expressions

U(r) = U(r)+I. [U,(re)aG(r, r)/anldS (3)

and

0 = U1(r) +J. [U.(r')AG(rr)' nldS. (4)

To solve these expressions, it is convenient to represent U1(r), U(r') and G(r,r') in some suitable series
expansion, which upon truncation leads to matrix equations that can be solved using digital computers. The Green's
function, G, is a normal operator. and thus can be represented by the biorthogonal series

G(r,r) = ikIRe p,(r<)p,(r>) (5)

where r< and r> are the greater and lesser of the two points r and r'relative to the origin of the object. U, the incident

wavefield, is known and can be shown to be:

U,(r) = la.Retp.(r). (6)

Similarly the scattered field U(r)= U(r) - U,(r) can be expanded as:

U,(r) = af, v(r) (6')

which leads to

a, = -ikfU.(r )ap(r)/an dS. (7)

and

f,= iklU.(r') aRep1(r)/an dS. (7')

The folowing e-,parm'en has been proven to satisfy closur on the surface for the rigid problem:

U#(r) = I a b Re(p(r) (8)

where b. is the only unknown on the right hand side of Eq. (7). T'is rtCuces (7) to an expression inth tbc
expansion coefficients b, an the only quantities to be determined. We obtain

a. -1. b. 1%. (r')a Reqp.(r')/an dS= -1. b. Q.. (9)

f 1, 1* b, I Reqp. (r')a Recp.(r')ian dS= 1. b. ReQ., (9)
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where Q,. is an element of some known matrix. In manix form, Equations (9) and (9) can be expressed

a=-ikQb (10)

f ik Re Qb. (i 1)

There are a variety of numerical strategies to attack this computational problem. The most straightforward
(but unfortunately the most problematic) method would be direct numerical inversion, to eliminate b from Eq. (10)
and replace it in Eq. (11). to arrive at a formally convenient expression for the scattered wavefield, represented by f.
This leads to Eq. (12), relating the scattered field f with the incident field a.

f = -Re QQ'a. (12)

Q is an n x n matrix, and a and fare I x n column vectors. We can view this as a mapping from the incident

field a to the scattered field f via the quantity -ReQQI. It is conventional in certain areas of physics to describe such
a mapping as a transition; hence this computational mapping is often referred to as a transition or "T matrix"
operation.

As noted, a straightforward evaluation of Eq. (12) is usgally not the most efficient way to solve for f. An
alternate method devised by us to obviate this difficulty is the coupled higher-order T-matrix3 ' method described
below. The most elementary formulation of this solution is to block Q into four submatrices (Q(ij), where ij = (1, m)
and demand that the Q(ii) matrices be square. This results in a new T matrix of order (1,1) which is convergent and
requires an inverse no larger than the largest pair of (ii).

TOJ) = -PG (13)

where

P = Re Q(l) - Re Q(lm) Ql(mm) Q(ml) (14)

and

G Q(U) - Q(lm)Q-'(mm) Q(ml). (15)

Eq. (10) is related to an integral equation of the first kind, and can be transformed using a method developed
by us into an eigenvalue problem. The unknown quantity in Eq. (10) is the surface term associated with the column
vector b. By obtaining b directly, we then have the solution for the scattered field f via Eq. (11). To accomplish this
we create a Hermitian matrix H - Q Qt, where Q1 is the adjoin] of Q. (It is easy to show that H is self-adjoint or
Hermitian). The eigenvalues 7h and the eigenvectors 0 can be obtained in a straightforward manner, described
below, where

It is known that the eigenvalues ), of Hermitian operators are positive, real and monotonically increasing,
and that the eigenvectors 0, form an orthonormal set of vectors. Moreover, it can be shown that these vectors span
the space associated with this problem. Thus, we can expand the unknown surface quantity b in terms of the 0,'s.
By exploiting the orthonormality of the eigenfunctions of H, we arrive at the following expression for f:

f- .ReJ Q 1/(Q ). (17)

The more complicated case of elastic targets imbedded in a fluid may also be derived, in which many of the
previous proccdures can be used. Let us outline the solution of this problem for an elastic solid. We still require the
Huygen's-Poincae'integral in the fluid due to scattering from the target. However, we also require a generalization
Of the expression for an object in an elastic environment. An expression suitable for the problem we wish to develop
hbs been obtained by Varatharajulu and Pao' in a form appropriate to derive a transition matrix for elastic targets,
ad will be used in the following equations. For the fluid we have:
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U(r') = U,(r') + I [tU - t(U) UJ dS (interior point) (18)

0 = U1(r") + f[t.U - (U) UJ dS (exterior point). (19)

Here traction t=n. { I VU+ V(VU+ UV)}. In the solid, we have an analogou- pair of equations

U(r") = U,(r") + I [tU - tU) UJ dS (interior point) (20)

0 = U,(r') + J[tU - t(U) UJ dS (exteric: point) (.1)

where r" is in the object interior and r' the exterior. t (t) and U_ (U.) are the traction and displacement vectors on
the surface as approached from the object's interior (exterior).

Imposed on these equations we have the following boundary conditions:

U.n = U.n (22)

t.nt-- n (23)

t x n 0. (24)

In the following, we consider the case of general three-dimensional solids, using a spherical coordinate
representation. Here the outward wave solutions to the full elastic wave equation are

V , - (k) a /k V (h,(kr) Y. (0,4))) (25)

2,, = 1/(l(1+1)12 V x (rhN(kr) Y,, (0,0)) (26)

V3. = i/k V x (W2.) (27)

where h am spherical Hankel functions of the first kind, and Y,-'s are spherical harmonics (normalized to unity).
The total wavenumbers of longitudinal and transverse waves are k and r. Normalization is chosen so that each
wavefunction is normalized to i unit flux for any closed surface that encloses the origin. For a nonviscous fluid, only
k is needed, so that (:/k) is replaced by unity in Eq. (26).

As in the previous T-matrix formulation for acoustic targets, the general technique of obtaining a transition-
matrix for an elastic solid is to eliminate the unknown surface wavefields and tractions. This elimination is
accomplished byjudicious use of the boundary conditions, the partial wavefield expansions (Huygen's principle for
waves interior to the scatterer). The original derivation of the following expression is given by Bostrom'. By suitable
elimination, one can arrive at relation (28), between the incident field partial wave coefficients (a ) and scattered field
partial wave coefficients (f):

f - -Q: RW'p(qtR"PYa. (28)

For completeness we list the results for an elastic shell7:

f - -QR M" P(qM"P)"a (29)

where M = Q+RT2+iT 2, and Q, P. and R am defined by the following surface integrals:

Q(; ;)ij - kIpcal (XIV . (Ou/Re)Win) nf. (Ou/Re)14,J (30)
- (n. (Ou/Re)] V.nmn • t (Ou/Re) M}. .
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' g i =k /~oI t:[(Ou/Re) W 11 • [(Ou/Re) W..("xn] (31I)

- (n- [(Ou/Re) 4v,](n • t=)t(Ou/Re) 1uf~xn].

P4 = k ./ppc2 1J[(n "t2) (Re 4'O)n. a)1 .LS (32)

T2 -- ReQ 2(Q2)' (33)

T, corresponds to scattering from an evacuated inclusion in an elastic environment. Without going into detail
regarding the solution of Eqs. (28) or (29) it is best to employ the unitary methods.

In the rmce&ng, we have outlined methods that include a broad spectrum of boundary conditions to describe
scattering from axially symmetric targets. Implementing these expressions is not without pitfalls, and much of our
past efforts has focused on overcoming them, with good success. These methods are suitably general and effective
to address a large class of problems without encountering complications experienced by other numerical schemes.

Below we apply the above EBC/T.matrix formulations to a number of physically illustrative engineering
problems, that underscore some of the more dramatic computational features.

APPUCATIONS OF THE T-METHOD TO ENGICEERING PROBLEMS

We first treat scattering from rigid impenetrable objeczs. The two simplest cases are for spheroids and for
cylinders with hemispherical caps. In addition, we also consider the case of scattering from elastic solids ,where
we specifically examine resonance phenomena.

T-Matrix Applications to Imenet'able Problems

There are two classes of targets for impenetrable problems, Le., soft and hard scatterers. They do not support
body r-sonances; therefore; we examine acoustic quantities appropriate for nonresonant targets such as angular
distributions which ar dependent on target geometry and can be useful to determine such features of target shape
as symmetry or elongation. In particular, reflection, diffraction, and generalized Snell's law behavior can be
observed as curved-rrface analogs for the plane-layered case.

Bistatic angular distributions correspond to measurement of a scattered field at any point in space for some
incident wave fixed relative to some source-object orientation. In Fig. 1. we examine a rigid spheroid of aspect
(length-to-width) ratio of 16: 1. Fig. I a-d represent scattering from the object along the axis of symmetry (end-on)
(a), 30 (b), 60 (c) and 90 (d) degrees relative to the symmetry axis (broadside). The values of the incident wavefield
frequency are expressed using the dimensionless quantity kIJ2, where L is the object length and k the total
wavenumber (k=2riX). The value of kL/2 in Fig. 2 is 200, which implies that the object is about 70 wavelengths
long and thus in the intermediate-f-equency region where neither low nor high frequency approximations apply. In
all figures frequency is sufficiently high that wave diffraction effects are significant in the forward scattering
direction. Perhaps the most interesting feaure of the four plots (Fig. 1 (a-d)) corrspotds to a reflection at the (fairly
flat) side of the object for scattering angles of 30 and 60 degrees. This reflection can occur only for very elongated
objects that approach flat surfaces, so that the reflected angle is almost the same as the incident angle (relative to
a straight line through the axis of symmetry).

EBC Applications to Elastic Solids

We now examine a phenomenon specific to elastic objects with smooth boundary conditions surrounded by
an acoustic fluid, namely, body resonances. The body resonances examined originate from the curved-surface
equivalents of seismic interface waves of pseudo-Rayleigh or Scholte type, propagating circumferentially to form
standing waves on a bounded object. If phase velocities are slowly-varying (as a function of frequency) at the object
surface, resonances occur at discrete values of kbr2. These resonances manifest themselves in a prescribed manner
(described below). For elongated elastic solids, three distinct resonance types occur. The first kind that we wish to
illustrate has to do with bending modes or flexural resonances. For unsupported spheroids a plane incident wave at
45 degrees relative tO the axis Of syaMc-y can excite these modes illustrated in Fig. 2a and 2b for aspect ratios of
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4 and 5 to 1. It can be shown' that the lowest mode corresponds to 2, and thereafter 3, 4, etc. The interesting t
about these resonances is they can be predicted by exact bar th-ories and coincide nicely with result he.
particular interest is the effect that with increasing aspect ratio the onset of resonances occur at lower k.-
a., opposed to Rayleigh resonances. The second kind (at lower frequencies) are due to leaky Rayleigh waves andla
been shown to be related to both target geometry and material parameters (notably shear modulus and densi
Resonances can in this case best be observed by examining the back-scattered echo amplitude and phase respoty

plotted as a function of kL/2. We illustrate this for an aluminum spheroid of aspect ratio 10 to I at end on inciden
Here we see two resonances superimposed on the semiperiodic pattern due to Franz waves associated with rigid
scattering. If we subtract rigid scattering (in partial wave space) from the elastic response then we are left with tbi
resonance response illustrated in Fig. 4 which shows that for aluminum the first resonance is broad while the secon.
diminishes, in contrast to WC targets which yield small narrow resonances at the lower value and a larger resonanc
for the next value. In addition to the above wave phenomena, it is also possible to excite "whispering galery ",
resonances, which we mention next. Finally, we examine broadside resonances for a 4 to 1 steel spheroid. Here we
can excite three phenomena. At the lowest value we can see a spike representing the lowest order Rayleigh resona"
seen end on corresponding to a standing wave circumnavigating the largest meridian of the spheroid- We also see
weak Franz waves similar those due to a cylinder and than we see the lowest order Ra> leigh and Whispering Gallery '-
resonances corresponding to circumferential waves around the smallest meridian.
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Figure 1. Scazieringfrom rigid spheroid with aspect ratio of 16 to I at a k2 = 200 a) end on, b) 30 degrees relative
to axis of symmeny. c) 60 degrees relative to axis of srymnetry and d) broadside.
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Figure 2. Flexral resonance predictedfrom a plane wave scanering at 45 degrees relative to the axis of symmery
of a steel spheroid a) of aspect ratio 4 and b) of aspect ratio 5.
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Figure 3. Back scattered signal from aluminum spheroid of aspect ratio of 10 to I end on incidence.
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Figwe 4. Back scattered signal from aluminum spheroid of aspect ratio of 10 to I end on incidence with rigid
background subtracted.
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Figure 5. Back scattered signalfrom steel spheroid of aspect ratio of 4 to I broad side incidence.
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